3.450 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{x (d+e x)} \, dx\)

Optimal. Leaf size=251 \[ -\frac{\left (-3 a^2 e^4-6 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{c} \sqrt{d} e^{3/2}}-a^{3/2} \sqrt{d} e^{3/2} \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )+\frac{\left (5 a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 e} \]

[Out]

((c*d^2 + 5*a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*e) - ((c^2*d^4 - 6*a*c*d^2*e^2
- 3*a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c
*d*e*x^2])])/(8*Sqrt[c]*Sqrt[d]*e^(3/2)) - a^(3/2)*Sqrt[d]*e^(3/2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sq
rt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])]

________________________________________________________________________________________

Rubi [A]  time = 0.276345, antiderivative size = 251, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {849, 814, 843, 621, 206, 724} \[ -\frac{\left (-3 a^2 e^4-6 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{c} \sqrt{d} e^{3/2}}-a^{3/2} \sqrt{d} e^{3/2} \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )+\frac{\left (5 a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 e} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x*(d + e*x)),x]

[Out]

((c*d^2 + 5*a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*e) - ((c^2*d^4 - 6*a*c*d^2*e^2
- 3*a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c
*d*e*x^2])])/(8*Sqrt[c]*Sqrt[d]*e^(3/2)) - a^(3/2)*Sqrt[d]*e^(3/2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sq
rt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])]

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x (d+e x)} \, dx &=\int \frac{(a e+c d x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x} \, dx\\ &=\frac{\left (c d^2+5 a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 e}-\frac{\int \frac{-4 a^2 c d^2 e^3+\frac{1}{2} c d \left (c^2 d^4-6 a c d^2 e^2-3 a^2 e^4\right ) x}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{4 c d e}\\ &=\frac{\left (c d^2+5 a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 e}+\left (a^2 d e^2\right ) \int \frac{1}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx-\frac{\left (c^2 d^4-6 a c d^2 e^2-3 a^2 e^4\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 e}\\ &=\frac{\left (c d^2+5 a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 e}-\left (2 a^2 d e^2\right ) \operatorname{Subst}\left (\int \frac{1}{4 a d e-x^2} \, dx,x,\frac{2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )-\frac{\left (c^2 d^4-6 a c d^2 e^2-3 a^2 e^4\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 e}\\ &=\frac{\left (c d^2+5 a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 e}-\frac{\left (c^2 d^4-6 a c d^2 e^2-3 a^2 e^4\right ) \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 \sqrt{c} \sqrt{d} e^{3/2}}-a^{3/2} \sqrt{d} e^{3/2} \tanh ^{-1}\left (\frac{2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ \end{align*}

Mathematica [A]  time = 0.889789, size = 275, normalized size = 1.1 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (-\frac{\sqrt{c} \sqrt{d} \left (-3 a^2 e^4-6 a c d^2 e^2+c^2 d^4\right ) \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{\sqrt{c d} \sqrt{c d^2-a e^2} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}}-\frac{8 a^{3/2} \sqrt{d} e^3 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a e+c d x}}{\sqrt{a} \sqrt{e} \sqrt{d+e x}}\right )}{\sqrt{d+e x}}+\sqrt{e} \sqrt{a e+c d x} \left (5 a e^2+c d (d+2 e x)\right )\right )}{4 e^{3/2} \sqrt{a e+c d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[e]*Sqrt[a*e + c*d*x]*(5*a*e^2 + c*d*(d + 2*e*x)) - (Sqrt[c]*Sqrt[d]*(c^2*
d^4 - 6*a*c*d^2*e^2 - 3*a^2*e^4)*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a
*e^2])])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]) - (8*a^(3/2)*Sqrt[d]*e^3*ArcTan
h[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/Sqrt[d + e*x]))/(4*e^(3/2)*Sqrt[a*e + c*d*x])

________________________________________________________________________________________

Maple [B]  time = 0.065, size = 1130, normalized size = 4.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x/(e*x+d),x)

[Out]

1/3/d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/4/d*a*e^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+1/8/d^2*a^
2*e^3/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+5/4*a*e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/16/d^2*a^3*e
^5/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+9/1
6*a^2*e^3*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2
)+9/16*d^2*a*e*c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*
c)^(1/2)+1/4*d*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+1/8*d^2*c/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)
-1/16*d^4*c^2/e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c
)^(1/2)-d*a^2*e^2/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2))/x)-1/3/d*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)-1/4/d*a*e^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+
x))^(1/2)*x-1/8/d^2*a^2*e^3/c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+1/16/d^2*a^3*e^5/c*ln((1/2*a*e^2-1
/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-3/16*a^2*e^
3*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^
(1/2)+3/16*d^2*a*e*c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+
x))^(1/2))/(d*e*c)^(1/2)+1/4*d*c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x+1/8*d^2*c/e*(c*d*e*(d/e+x)^2+
(a*e^2-c*d^2)*(d/e+x))^(1/2)-1/16*d^4*c^2/e*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x
)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 26.2505, size = 2855, normalized size = 11.37 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

[1/16*(8*sqrt(a*d*e)*a*c*d*e^3*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2
 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) -
(c^2*d^4 - 6*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 +
4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e
^3)*x) + 4*(2*c^2*d^2*e^2*x + c^2*d^3*e + 5*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^2),
 1/8*(4*sqrt(a*d*e)*a*c*d*e^3*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2
+ a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + (
c^2*d^4 - 6*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*
d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(2*c^2*d^
2*e^2*x + c^2*d^3*e + 5*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^2), 1/16*(16*sqrt(-a*d*
e)*a*c*d*e^3*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)
/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)) - (c^2*d^4 - 6*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(c*d
*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*
(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(2*c^2*d^2*e^2*x + c^2*d^3*e + 5*a*
c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^2), 1/8*(8*sqrt(-a*d*e)*a*c*d*e^3*arctan(1/2*sqrt
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*
e^2 + (a*c*d^3*e + a^2*d*e^3)*x)) + (c^2*d^4 - 6*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x
^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2
*d^3*e + a*c*d*e^3)*x)) + 2*(2*c^2*d^2*e^2*x + c^2*d^3*e + 5*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^
2)*x))/(c*d*e^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/x/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x/(e*x+d),x, algorithm="giac")

[Out]

sage0*x